loading

6A, 17V, ACOT® High-Efficiency Synchronous Step-Down Converter Evaluation Board

EVB_RTQ2806AGQWF

Share
ACTIVE

This user guide contains information for the RTQ2806A DC-DC converter. Also included are the performance specifications, the schematic, and the list of materials for the RTQ2806A.

General Description

This user guide contains information for the RTQ2806A DC-DC converter. Also included are the performance specifications, the schematic, and the list of materials for the RTQ2806A.



Performance Specification Summary

A summary of the RTQ2806A Evaluation Board performance specification is provided in Table 1. The ambient temperature is 25°C.


Table 1. RTQ2806A Evaluation Board Performance Specification Summary

Specification

Test Conditions

Min

Typ

Max

Unit

Input Voltage Range

3.5

12

17

V

Output Current

0

--

6

A

Default Output Voltage

--

1.8

--

V

Operation Frequency

--

1100

--

kHz

Output Ripple Voltage

IOUT = 6A

--

10

--

mVp-p

Line Regulation

IOUT = 3A, VIN = 3.5V to 17V

--

±0.5

--

%

Load Regulation

VIN = 12V, IOUT = 0.001A to 6A

--

±0.5

--

%

Load Transient Response

IOUT = 10mA to 6A

--

±5

--

%

Maximum Efficiency

VIN = 12V, VOUT = 1.8V, IOUT = 6A

--

89.6

--

%



Power-up Procedure

Suggestion Required Equipments

  • RTQ2806A Evaluation Board
  • DC power supply capable of at least 17V and 7A
  • Electronic load capable of 6A
  • Function Generator
  • Oscilloscope

Quick Start Procedures

The Evaluation Board is fully assembled and tested. Follow the steps below to verify board operation. Do not turn on supplies until all connections are made. When measuring the output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the output voltage ripple by touching the probe tip and ground ring directly across the last output capacitor.


Proper measurement equipment setup and follow the procedure below.

1) With power off, connect the input power supply to the VIN and GND pins.

2) With power off, connect the electronic load between the VOUT and nearest GND pins.

3) Turn on the power supply at the input. Make sure that the input voltage does not exceeds 17V on the Evaluation Board.

4) Check for the proper output voltage using a voltmeter.

5) Once the proper output voltage is established, adjust the load within the operating ranges and observe the output voltage regulation, ripple voltage, efficiency, and other performance.



Detailed Description of Hardware

Headers Description and Placement

一張含有 文字, 電子產品, 電路, 電子工程 的圖片

自動產生的描述

Carefully inspect all the components used in the EVB according to the following Bill of Materials table, and then make sure all the components are undamaged and correctly installed. If there is any missing or damaged component, which may occur during transportation, please contact our distributors or e-mail us at evb_service@richtek.com.


Test Points

The EVB is provided with the test points and pin names listed in the table below.

Test Point/

Pin Name

Function

J1

VIN input voltage connector

J2

PGND connection for input

J3

VOUT output voltage connector

J4

PGND connection for output

JP1

Connects EN to VIN to enable the device.

JP2

Connects PGOOD to VCC through a 100kΩ.

JP3

Mode selection

EN

EN test point

SS/REF

Can be used to monitor the reference voltage.

VCC

VCC test point

PGOOD

PGOOD output test point

MODE

Mode selection test point

RLIM

Can be used to monitor the voltage level of the valley current limit.

SW

Switch node test point



Bill of Materials

VIN = 12V, VOUT = 1.8V, IOUT = 6A, fSW = 1100kHz

Reference

Count

Part Number

Value

Description

Package

Manufacturer

U1

1

RTQ2806AGQWF

--

Step-Down Converter

WQFN-14TL 2x3 (FC)

RICHTEK

L1

1

74437346010

1µH

Inductor, Isat = 29A, 10mΩ

--

Wurth Elektronik

C1, C2

2

GRM31CR71E106KA12L

10µF

Capacitor, Ceramic, 25V, X7R

1206

MURATA

C3, C4

2

GRM31CR71H475KA12L

4.7µF

Capacitor, Ceramic, 50V, X7R

1206

MURATA

C5, C7, C10, C17

2

C1608X7R1H104KT000N

0.1µF

Capacitor, Ceramic, 50V, X7R

0603

TDK

C6

1

GRM188R61E475KE11D

4.7µF

Capacitor, Ceramic, 25V, X5R

0603

MURATA

C8

1

0603N331J500CT

330pF

Capacitor, Ceramic, 50V, NPO

0603

WALSIN

C9

1

GRM188R71H223KA01D

22nF

Capacitor, Ceramic, 50V, X7R

0603

MURATA

C11, C12,

C13, C14,

C15, C16

6

GRM31CR60J476ME19L

47µF

Capacitor, Ceramic, 6.3V, X5R

1206

MURATA

R1

1

WR06X2002FTL

20k

Resistor, Chip, 1/10W, 1%

0603

WALSIN

R2

1

WR06X1002FTL

10k

Resistor, Chip, 1/10W, 1%

0603

WALSIN

R3, R4, R5

3

WR06X1003FTL

100k

Resistor, Chip, 1/10W, 1%

0603

WALSIN

R6

1

RC0603FR-075K1L

5.1k

Resistor, Chip, 1/10W, 1%

0603

YAGEO

R7

1

WR06X000 PTL

0

Resistor, Chip, 1/10W, 1%

0603

WALSIN

R8

1

WR06X2433FTL

243k

Resistor, Chip, 1/10W, 1%

0603

WALSIN

R9

1

RTT031213FTP

121k

Resistor, Chip, 1/10W, 1%

0603

RALEC

R10

1

CR0603F60K4P05Z

60.4k

Resistor, Chip, 1/10W, 1%

0603

EVER OHMS

R11

1

RTT033012FTP

30.1k

Resistor, Chip, 1/10W, 1%

0603

RALEC



Typical Applications

EVB Schematic Diagram

Technical Document Image Preview


1. The capacitance values of the input and output capacitors will influence the input and output voltage ripple.

2. MLCC capacitors have degrading capacitance at DC bias voltage, and especially smaller size MLCC capacitors will have much lower capacitance.


Measure Result

Output Ripple Measurement

Output Ripple Measurement

Technical Document Image Preview

Technical Document Image Preview

Load Transient Response

Load Transient Response

Technical Document Image Preview

Technical Document Image Preview

Power On from EN

Power Off from EN

Technical Document Image Preview

Technical Document Image Preview

Power On from EN

Power Off from EN

Technical Document Image Preview

Technical Document Image Preview

Overcurrent Protection

Short-Circuit Protection and Recovery

Technical Document Image Preview

Technical Document Image Preview

Overvoltage Protection

Efficiency vs. Output Current

Technical Document Image Preview

Technical Document Image Preview

Output Voltage vs. Output Current

Output Voltage vs. Input Voltage

Technical Document Image Preview

Technical Document Image Preview

Thermal Image at VIN = 12V, VOUT = 1.8V, IOUT = 6A

Technical Document Image Preview


Note: Care must be taken to avoid a long ground lead on the oscilloscope probe when measuring the input or output voltage ripple. Measure the output voltage ripple by touching the probe tip directly across the output capacitor.



Evaluation Board Layout

Figures 1 to 4 show the RTQ2806A Evaluation Board layout. This board size is 85mm x 80mm and is constructed on a four-layer PCB, with outer layers of 2 oz. Cu and inner layers with 2 oz. Cu.

一張含有 文字, 螢幕擷取畫面, 圓形, 電路 的圖片

自動產生的描述

Figure 1. Top View (1st layer)


一張含有 螢幕擷取畫面, Rectangle, 樣式, 圓形 的圖片

自動產生的描述

Figure 2. PCB Layout—Inner Side (2nd Layer)


一張含有 螢幕擷取畫面, Rectangle, 圓形, 圖表 的圖片

自動產生的描述

Figure 3. PCB Layout—Inner Side (3rd Layer)


一張含有 螢幕擷取畫面, 文字, Rectangle, 圓形 的圖片

自動產生的描述

Figure 4. Bottom View (4th Layer)

Title Last Update Share Download
Evaluation Board User Guide 2024/09/26
Bill of Materials 2024/09/26
Schematic 2024/09/26
Gerber File 2024/09/26
RTQ2806A
RTQ2806A

The RTQ2806A is a high-performance, synchronous step-down converter that can deliver up to 6A output current with a wide input supply voltage range of 3.5V to 17V. The device integrates low RDSON power MOSFETs, an accurate 0.6V ± 1% reference over the full operating junction temperature range and an integrated diode for the bootstrap circuit, offering a very compact solution.

The RTQ2806A adopts Advanced Constant On-Time (ACOT®) control architecture that provides excellent transient performance and reduces the external-component count of external components. In steady states, the ACOT® can operate at nearly constant switching frequency over line, load and output voltage ranges, making the EMI filter design easier.

The device offers a variety of functions provide more design flexibility. The selectable switching frequency, current limit level and PWM operation modes make the RTQ2806A easy-to-use over wide application range. An independent enable control input pin and power-good indicator are also provided for easy sequence control. The device provides a programmable soft-start-up by an external capacitor connected to the SS/TR pin to control the inrush current during start-up.

The RTQ2806A provides complete protection functions including input undervoltage lockout, output undervoltage protection, output overvoltage protection, overcurrent protection, and over-temperature protection. The RTQ2806A is available in a thermally enhanced WQFN-14TL 2x3 (FC) package.

The recommended junction temperature range is -40°C to 150°C.

TOP